Clinical-Bladder cancer

Impact of sex on response to neoadjuvant chemotherapy in patients with bladder cancer

David D’Andrea, M.D. a, Peter C. Black, M.D. b, Homayoun Zargar, M.D. b,c, Kamran Zargar-Shoshtari, M.D. d,e, Sonja Zehetmayer, Ph.D. f, Adrian S. Fairey, M.D. g, Laura S. Mertens, M.D. h, Colin P. Dinney, M.D. i, Maria C. Mir, M.D. i,j, Laura-Maria Krabbe, M.D. l,m, Michael S. Cookson, M.D. n, Niels-Erik Jacobsen, M.D. g, Jeffrey S. Montgomery, M.D. o, Nikhil Vasdev, M.D. p,q, Evan Y. Yu, M.D. f, Evanguelos Xylinas, M.D. s, Nicholas J. Campain, M.D. t, Wassim Kassouf, M.D. u, Marc A. Dall’Era, M.D. v, Jo-An Seah, M.D. w, Cesar E. Ercole, M.D. x, Simon Horenblas, M.D. h, Srikala S. Sridhar, M.D. w, Daniel A. Barocas, M.D. dd, Yair Lotan, M.D. l, Petros Grivas, M.D. r, ee, Andrew J. Stephenson, M.D. j, Jay B. Shah, M.D. i,ff, Bas W. van Rhijn, M.D. h, Siamak Daneshmand, M.D. gg, Philippe E. Spiess, M.D. d, Shahrokh F. Shariat, M.D. a,l,hh,ii,jj,*

a Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
b Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
c Department of Urology, Fundacion Instituto Valenciano de Oncologia, Valencia, Spain
d Department of Genitourinary Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL
e Department of Urology, University of Auckland, Auckland, New Zealand
f Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
g University of Alberta, Edmonton, AB, Canada
h Department of Urology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
i Department of Urology, MD Anderson Cancer Center, Houston, TX
j Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
k Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX
l Department of Urology, University of Münster, Münster, Germany
m Department of Urology, University of Oklahoma College of Medicine, Oklahoma City, OK
n Department of Urology, University of Michigan Health System, Ann Arbor, MI
o Department of Urology, Hertfordshire and Bedfordshire Urological Cancer Centre, Department of Urology, Lister Hospital, Stevenage, UK
p Department of Urology, University of California at Los Angeles, Los Angeles, CA
q Department of Urology, University of Miami, Miami, FL
r Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX
s Department of Urology, University of California at Davis, Davis Medical Center, Sacramento, CA
t Department of Urology, University of California at Davis, Davis Medical Center, Sacramento, CA
u Princess Margaret Hospital, Toronto, ON, Canada
v Department of Biostatistics, University of Michigan, Ann Arbor, MI
w Department of Urology, University of Kansas Medical Center, Kansas City, KS
x Department of Urology, University of California at Los Angeles, Los Angeles, CA
y Department of Surgery (Division of Urology), McGill University Health Centre, Montreal, Canada
z Department of Surgery, University of California at Davis, Davis Medical Center, Sacramento, CA

*Corresponding author at: Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
Tel.: +43 40400 26 150.
E-mail address: sfshariat@gmail.com (S.F. Shariat).

https://doi.org/10.1016/j.urolonc.2020.01.010
1078-1439/© 2020 Elsevier Inc. All rights reserved.
Despite standard treatment for advanced disease and to suffer from worse survival outcomes, females are more likely to be diagnosed with bladder cancer (BCa) incidence is 3 to 4 times higher in males compared to females suggesting a possible differential response between sexes. This might be the explanation underlying the comparable survival outcomes between sexes despite females presenting with more advanced tumor stage.

1. Introduction

Patient sex (female vs. male) has a differential effect on bladder cancer (BCa) presentation and survival [1,2]. While BCa incidence is 3 to 4 times higher in males compared to females, the latter are more likely to be diagnosed with advanced disease and to suffer from worse survival outcomes despite standard treatment [3–5]. Neoadjuvant chemotherapy (NAC) is part of the standard of care therapeutic modalities delivered in patients with clinically nonmetastatic muscle-invasive BCa (MIBC) [6,7]. However, females are less likely to receive NAC which is partially explained by differences in health care factors like time to diagnosis and treatment modality [8–11].

To the best of our knowledge, there is no data on a potentially differential response to NAC according to sex in patients treated with radical cystectomy (RC). To fill this gap, we compared pathologic response rates and survival outcomes between sexes adjusting for the effects of smoking and age suggestive of menopause in a large multicenter dataset of patients treated with NAC followed by RC for BCa from 2000 to 2013 [7].

Patients with clinically metastatic disease (N+ and/or M+) were excluded, leaving 1,031 patients for final analysis. A total of 313 patients were lost to follow-up, leaving 718 patients for survival analyses. Clinical stage prior to the administration of chemotherapy was assigned by the treating physician based on transurethral resection of the bladder, bimanual exam, and/or cross-sectional imaging.

2. Material and methods

2.1. Study population

We performed a retrospective analysis of our multi institutional database comprising 1,474 patients treated with NAC followed by RC for BCa from 2000 to 2013 [7].

Patients with clinically metastatic disease (N+ and/or M+) were excluded, leaving 1,031 patients for final analysis. A total of 313 patients were lost to follow-up, leaving 718 patients for survival analyses. Clinical stage prior to the administration of chemotherapy was assigned by the treating physician based on transurethral resection of the bladder, bimanual exam, and/or cross-sectional imaging.

2.2. Chemotherapy

NAC regimens consisted of cisplatin-based combination chemotherapy, or other. Chemotherapy regimen and number of cycles were administered at clinician discretion in accordance with institutional standards and guidelines at that time.

2.3. Radical cystectomy

Patients were treated with RC and lymphadenectomy. All procedures were performed by an open technique. The decision for the type of urinary diversions was based on patient and disease characteristics, patient’s and surgeon’s preferences as well as patient’s performance status. All surgical specimens were processed according to standard pathologic procedures and staged according to the 1998 TNM classification. All tumors were high grade.
Response to NAC was assessed by yTNM stage at RC. Complete pathologic response was defined as ypT0N0. Downstaging was defined as any stage migration from non-organ confined disease to ypT2-N0, nonmuscle-invasive bladder cancer (ypNMIBC)-N0 or ypT0-N0 or from cT2 to ypNMIBC-N0 or ypT0-N0. Overall survival (OS) and cancer-specific survival (CSS) were calculated from the day of RC until death of any cause for OS and death due to BCa for CSS, respectively. Patients were censored at the time of last follow up. Cause of death was recorded through patients charts and/or death certificates [12].

2.5. Molecular correlates of response to chemotherapy

Since both RNA expression subtypes and mutations in specific DNA damage response (DDR) genes have been shown to correlate with response to NAC in patients with MIBC, we investigated the prevalence of subtypes and DDR gene alterations according to sex using data from 395 chemonaive patients with MIBC from The Cancer Genome Atlas (TCGA) Program [13]. The TCGA subtypes (luminal papillary, luminal infiltrated, luminal, basal squamous, and neuronal) were used. We selected ERCC2 [14] as well as RB1, ATM, and FANCC [15] as key DDR genes based on prior reports, but also added ATR, BRCA1, BRCA2, ERCC5, RAD51C, and REQLC4 based on the list of DDR genes selected as functionally important in the Alliance A031701 trial investigating bladder preservation after NAC (NCT03609216) [16].

2.6. Statistical analysis

We performed a stepwise approach to the statistical analyses. First, we performed multiple imputation by using chained equations to handle missing data that were assumed to be missing at random. Fifteen imputed data sets were generated using predictive mean matching for numeric variables, logistic regression for binary variables, and Bayesian polytomous regression for factor variables. Second, we compared the distribution of patients’ clinicopathologic features according to sex. Third, we evaluated the association of sex with pathologic response using univariable and multivariable logistic regression modeling. Due to the even distribution of the data between groups, adjustments using propensity score were not performed. Fourth, as preplanned analysis, we introduced interaction terms in the logistic models to evaluate the synergistic effect of sex and smoking status or menopausal status. As the age of menopause was not available, we arbitrarily assigned the age of 50 as cutoff for menopause. Fifth, we investigated the association of sex with OS and CSS using Cox regression analyses and plotted survival curves using the Kaplan-Meier method. Sixth, we tested the validity of the Cox model assumption using Shoenfeld residuals. Due to the exploratory character of the study, statistical significance was considered at $P < 0.05$, but not in a confirmatory manner. Therefore, no adjustment for multiplicity was performed. All tests were performed with R (R Foundation for Statistical Computing, v3.5.1).

3. Results

Clinicopathologic features of the population are shown in Table 1. Overall, 804 (78%) patients were of male sex and 227 (22%) were of female sex. Females had more advanced clinical stage at presentation than their male counterparts (nonorgan confined disease 36.6% vs. 32.6%).

We observed an equal distribution of ypT stage between sexes after NAC (Fig. 1). On univariable logistic regression analyses, we could not identify an association of sex with downstaging or complete pathologic response to NAC (all $P > 0.5$). Multivariable analyses which adjusted for the

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Clinicopathologic features of 1,031 patients treated with neoadjuvant chemotherapy and radical cystectomy for clinically nonmetastatic muscle-invasive bladder cancer, stratified by sex</th>
<th>Male</th>
<th>female</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (IQR)</td>
<td>63 (57–71)</td>
<td>65 (58–72)</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Smoking, n (%)</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>292 (36.3)</td>
<td>100 (44.1)</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>Former</td>
<td>451 (56.1)</td>
<td>119 (52.4)</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>61 (7.6)</td>
<td>8 (3.5)</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>Histology, n (%)</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urothelial</td>
<td>705 (87.7)</td>
<td>201 (88.5)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Mixed histological variant*</td>
<td>99 (12.3)</td>
<td>26 (11.5)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Chemotherapy regimen, n (%)</td>
<td>98 (12.3)</td>
<td>26 (11.5)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Cisplatin-based</td>
<td>670 (83.3)</td>
<td>192 (84.6)</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>134 (16.7)</td>
<td>35 (15.4)</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>Chemotherapy cycles, n (%)</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–2</td>
<td>76 (9.5)</td>
<td>32 (14.1)</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>3–4</td>
<td>679 (84.5)</td>
<td>182 (80.2)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>5–8</td>
<td>49 (6.1)</td>
<td>13 (5.7)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>cT, n (%)</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cT2</td>
<td>510 (63.4)</td>
<td>131 (57.7)</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>cT3</td>
<td>195 (24.3)</td>
<td>77 (33.9)</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>cT4</td>
<td>99 (12.3)</td>
<td>19 (8.4)</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>ypT, n (%)</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ypT0</td>
<td>190 (23.6)</td>
<td>48 (21.1)</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>ypNMIBC</td>
<td>164 (20.4)</td>
<td>46 (20.3)</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>ypT2</td>
<td>160 (19.9)</td>
<td>38 (16.7)</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>ypT3/T4</td>
<td>290 (36.1)</td>
<td>95 (41.9)</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>ypN, n (%)</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ypN0</td>
<td>642 (79.9)</td>
<td>174 (76.7)</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>ypN1</td>
<td>64 (8.0)</td>
<td>20 (8.8)</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>ypN2</td>
<td>85 (10.6)</td>
<td>29 (12.8)</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>ypN3</td>
<td>13 (1.6)</td>
<td>4 (1.8)</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>Nodes removed, median (IQR)</td>
<td>18 (11–27)</td>
<td>16 (11–25)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Positive STSM, n (%)</td>
<td>65 (8.1)</td>
<td>16 (7.0)</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

IQR = interquartile range; NMIBC = nonmuscle-invasive bladder cancer; STSM = soft tissue surgical margin.
* Mixed histological variant includes adenocarcinoma, neuroendocrine carcinoma, and squamous carcinoma.
effects of clinical stage, administered NAC regimen, number of cycles, and smoking status, failed to identify a significant difference between females and males in downstaging or complete pathologic response to NAC when comparing the means between the 2 populations in the overall model (all \(P > 0.5 \); Table 2).

Overall, 207 (91\%) female patients were 50 years or older. Of these, 91 (44\%) were never smokers, 109 (53\%) former smokers, and 7 (3\%) current smokers. On univariable and multivariable logistic regression analyses, we could not identify an association of menopausal status with complete response to NAC or downstaging (all \(P > 0.5 \); Table 3).

Table 2
Logistic regression analyses for the association of sex and smoking with downstaging and ypT0N0 status in 1,031 patients treated with neoadjuvant chemotherapy and radical cystectomy for clinically nonmetastatic muscle-invasive bladder cancer

<table>
<thead>
<tr>
<th></th>
<th>Downstaging ypNMIBC (OR 95%CI)</th>
<th>(P)</th>
<th>ypT0N0 ypNOC (OR 95%CI)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univariable analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female vs. male sex</td>
<td>0.92 (0.68−1.24)</td>
<td>0.59</td>
<td>0.87 (0.60−1.23)</td>
<td>0.44</td>
</tr>
<tr>
<td>Smoker</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>Ref</td>
<td></td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>Former</td>
<td>1.06 (0.82−1.38)</td>
<td>0.63</td>
<td>0.90 (0.66−1.22)</td>
<td>0.49</td>
</tr>
<tr>
<td>Current</td>
<td>0.74 (0.44−1.24)</td>
<td>0.25</td>
<td>0.73 (0.37−1.37)</td>
<td>0.35</td>
</tr>
<tr>
<td>Multivariable analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female vs. male sex</td>
<td>0.82 (0.51−1.31)</td>
<td>0.40</td>
<td>1.18 (0.69−1.98)</td>
<td>0.54</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>Ref</td>
<td></td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>Former</td>
<td>1.01 (0.75−1.36)</td>
<td>0.96</td>
<td>1.01 (0.72−1.45)</td>
<td>0.93</td>
</tr>
<tr>
<td>Current</td>
<td>0.77 (0.43−1.36)</td>
<td>0.37</td>
<td>0.75 (0.36−1.46)</td>
<td>0.41</td>
</tr>
<tr>
<td>Clinical T stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cT2</td>
<td>Ref</td>
<td></td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>cT3</td>
<td>1.31 (0.98−1.75)</td>
<td>0.07</td>
<td>0.73 (0.51−1.03)</td>
<td>0.08</td>
</tr>
<tr>
<td>cT4</td>
<td>1.29 (0.86−1.93)</td>
<td>0.21</td>
<td>0.89 (0.54−1.41)</td>
<td>0.63</td>
</tr>
<tr>
<td>Cisplatin-based chemotherapy</td>
<td>2.09 (1.48−2.99) (<0.01)</td>
<td></td>
<td>1.46 (0.96−2.28)</td>
<td>0.08</td>
</tr>
<tr>
<td>Chemotherapy cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–2</td>
<td>Ref</td>
<td></td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>3–4</td>
<td>1.28 (0.85−1.94)</td>
<td>0.23</td>
<td>1.18 (0.73−1.98)</td>
<td>0.52</td>
</tr>
<tr>
<td>5–8</td>
<td>0.84 (0.43−1.60)</td>
<td>0.59</td>
<td>0.84 (0.36−1.87)</td>
<td>0.68</td>
</tr>
<tr>
<td>Sex female: smoke former</td>
<td>1.16 (0.62−2.15)</td>
<td>0.64</td>
<td>0.57 (0.27−1.21)</td>
<td>0.15</td>
</tr>
<tr>
<td>Sex female: smoke current</td>
<td>1.41 (0.29−6.97)</td>
<td>0.66</td>
<td>0.50 (0.02−3.55)</td>
<td>0.55</td>
</tr>
</tbody>
</table>

\(F \)-statistics 2.79, \(P = 0.002 \) \(F \)-statistics 1.12, \(P = 0.34 \)

CI = confidence interval; OR = odds ratio.
Within a median follow-up of 17 months (interquartile range 7–37), 297 (41%) patients died, and 206 (29%) died of their BCa. On Cox regression analyses, female sex was neither associated with OS (hazard ratio [HR] 0.98, 95% confidence interval [CI] 0.69–1.38, \(P = 0.89 \)) nor CSS (HR 1.03, 95%CI 0.69–1.55, \(P = 0.88 \); Fig. 2). The validity of the proportional hazard assumption was supported by a nonsignificant relationship between residuals and time (\(P = 0.99 \)).

In a final step, we extracted TCGA data \(^{13}\) and analyzed the prevalence of 10 DDR genes (ATM, ATR, BRCA1, BRCA2, ERCC2, ERCC5, FANCC, RAD51C, RB1, and REQLC4) between males and females. We found that females have fewer DDR gene mutations overall compared to males (28.3% vs. 44.6%, \(P < 0.001 \)). However, there was no difference in the rate of single DDR gene mutations between sexes (Supplementary Fig. S1). With respect to RNA-based subtypes, basal squamous was more frequent in females (43.4% vs. 37.7%) and luminal papillary in males (37.7% vs. 28.3%). However, these differences were not statistically significant (all \(P \geq 0.05 \), Supplementary Fig. S2).

![Fig. 2. Kaplan-Maier curves for the association of sex with overall (A) and cancer-specific survival (B) in 718 patients treated with neoadjuvant chemotherapy and radical cystectomy for clinically nonmetastatic muscle-invasive bladder cancer.](image-url)
4. Discussion

In a retrospective analysis of a large multicenter cohort of patients treated with NAC followed by RC for nonmetastatic BCa there was a small but statistically significant difference in clinical T stage at diagnosis. This difference between sexes could no longer be observed after NAC. However, on logistic regression analysis, we could not observe an association of sex with pathologic complete response to NAC.

Although the incidence of BCa in females is lower than in males, female patients often present with more advanced disease and suffer from worse prognosis [1,2,17]. In this context, genetic, environmental, hormonal, and health care differences are known to play a role in response to standard therapies and oncologic outcomes [8,18]. However, a definitive and satisfactory explanation for these sex-based differences is still missing. We tried to shed light on this, by investigating the synergistic effect of smoking and cut-off age of 50, as surrogate for menopause [19], on response to NAC. We found no association of either age or smoking status with response to NAC. This is known to be different compared to exposure to checkpoint inhibitors in metastatic BCa [20]. However, less than 10% of the women in this cohort were under age 50 and a difference may be difficult to identify.

Smoking is a well-known risk factor for BCa [21,22]. Population-based studies have shown that among smokers, females have a higher risk of developing BCa compared to males (HR 2.75 for female vs. 2.32 for male) [23]. However, the synergistic effect of smoking and sex is not consistent in the literature [24,25]. In preclinical studies, smoking has been linked to chemoresistance in human BCa cell line [26]. However, the clinical literature presents controversial results regarding smoking status as predictor of chemoresistance, even when stratified by sex [27–30].

In our study, we expanded upon previous findings by investigating the synergistic effect of smoking and sex on the response to NAC in a large population with clinically nonmetastatic MIBC. We could not identify a statistically significant association of smoking status with downstaging or complete response to NAC. This effect can partially be explained by the low patient number in relation to the difference between groups. Indeed, if we look at the reported effect in population-based studies [23,31], a larger cohort would, probably, be needed to show a statistically significant difference between males and females.

Preclinical studies have shown that the modulation of circulating estrogen levels through the menopausal status leads to structural changes in the murine bladder [32,33]. In clinical studies, sex-based differences in hormonal status have been linked to the development and progression of BCa [33,34].

We investigated the association of age, using the cut-off of 50 years as surrogate for menopause, with pathological response to NAC. We, indeed, found no significant association with any of the outcomes. These findings are in line with the current literature. For example, in a case-control study with a meta-analysis, Dietrich et al. found that post-menopausal females were at higher risk for developing a BCa, but this association was not statistically significant (odds ratio [OR] 1.30, 95%CI 0.45–3.77). Those authors also reported that the OR increased with the age of menopause of <45 years (OR 1.33, 95%CI 0.72–2.47) [35]; but again, this association was not significant. Differences in tumor biology, change in sex steroid receptor after menopause, and the potential association of BCa with sex steroid hormones may explain this phenomenon [36].

Somatic genetic alterations in DDR genes and molecular subtypes have been linked to clinical response to cisplatin-based NAC [14,15,37]. Choi et al. have also reported that tumors of the basal subtype, which appear to benefit most from NAC, are enriched in women [37]. In order to evaluate whether differences in these 2 molecular parameters could explain the differential response to NAC in female, we analyzed the TCGA data. We found that males had overall more DDR gene mutations than females, which would weigh against a better response to NAC in women. On the other hand, we could not identify a statistically significant difference in the rate of single DDR gene mutations or prevalence of mRNA cluster between sexes. Altogether, these molecular findings do not clearly explain the modest differential response rate to NAC between males and females.

Complete pathologic response after NAC has been correlated with improved OS and RFS [38,39]. We investigated the association of sex with survival and found no statistical difference in OS and CSS. In contrast to our findings, in a retrospective analysis of 4,216 patients treated with RC without NAC, Messer et al. found a significant association of female sex with recurrence ($P = 0.039$) and CSS ($P = 0.001$) [40]. The explanation for these disparities is likely multifactorial [1,2,41]. In our study, all patients were treated with NAC, which might have potentially abrogated clinical differences in survival. Indeed, we observed no difference in pathologic T or N stage between sexes after NAC. This is an important finding which generates the hypothesis that sex-based differences and pathologic features in BCa may be equalized through the administration of NAC, leading to comparable oncologic outcomes.

We acknowledge the limitations of our study, which are mainly inherent to its retrospective design and the short follow-up. Staging and the administration of NAC were not standardised. Moreover, given anatomical differences between sexes, females may have been diagnosed with more advanced clinical stage compared to males. We could not account for the quality of surgical techniques. Indeed, the extent of resection and lymphadenectomy may have possibly influenced outcomes. Previous reports could not show a significant difference between sexes in patients treated with incomplete or complete TURB before NAC. For example, James et al. investigated the association of maximal TURB with complete pathologic response to NAC. Among 81 patients who received NAC, those treated with maximal TURB were more likely to achieve complete
pathologic response (OR 3.17, 95% CI 1.02—9.83). Stratified by sex, females were more likely to achieve complete pathologic response. However, this association was statistically not significant [42].

In addition, the anatomic difference in bladder wall thickness between males and females could also have influenced outcomes by allowing a more radical resection in females.

In this context, it can be argued that nodal staging could be a more accurate end-point to assess response to NAC, as lymph nodes are not affected by any surgical intervention prior to NAC administration. In a previous retrospective analysis of 304 patients with clinically N+ treated with induction chemotherapy followed by RC, we found that a complete pathological response can be achieved in 14.5% of the patients. However, the authors could not detect any differences in response to chemotherapy between sexes [43]. Finally, this study did not evaluate the association of sex with NAC-related toxicity, morbidity, and mortality.

Despite these limitations, our study provides clinically relevant information and generates the hypothesis that NAC could reduce the survival gap between males and females by equalizing sex-specific differences in clinical stage emphasizing the adoption of multimodal treatment modalities in the era of personalized medicine [44].

5. Conclusion

We found that, in patients planned for NAC and RC, females have worse clinicopathologic features compared to males at the time of diagnosis. After the administration of NAC this small difference between sexes disappeared. Our analyses generate the hypothesis of a differential response to NAC between sexes which could potentially equalize the clinical outcomes of patients with different prognosis. Further research should focus on sex-based differences in response to chemotherapy, as well as trimodal therapy [45].

Conflict of interest

Dr. D’Andrea has nothing to disclose.
Dr. Black reports personal fees from AbbVie, Asieris, AstraZeneca, Astellas, Bayer, Bysisent, BMS, H3-Biomedicine, Janssen, Merck, Roche, Sanofi, Urogen, Ferring, Ter-Sera, Pfizer, GenomeDX Biosciences, iProgen, Genentech, Sitka, MDx Health outside the submitted work; in addition, Dr. Black shares a patent with GenomeDX.
Dr. Zargar has nothing to disclose.
Dr. Zargar-Shoshtari has nothing to disclose.
Dr. Zehetmayer has nothing to disclose.
Dr. Fairey has nothing to disclose.
Dr. Mertens has nothing to disclose.
Dr. Dinney has nothing to disclose.
Dr. Mir has nothing to disclose.
Dr. Krabbe has nothing to disclose.

Dr. Campain has nothing to disclose.
Dr. Kassouf has nothing to disclose.
Dr. Dall’Era has nothing to disclose.
Dr. Seh has nothing to disclose.
Dr. Ercole has nothing to disclose.
Dr. Horenblas has nothing to disclose.
Dr. Sridhar has nothing to disclose.
Dr. McGrath has nothing to disclose.
Dr. Aning has nothing to disclose.
Dr. Wright has nothing to disclose.
Dr. Thorpe has nothing to disclose.
Dr. Morgan has nothing to disclose.
Dr. Holzbeierlein has nothing to disclose.
Dr. Bivalacqua has nothing to disclose.
Dr. North has nothing to disclose.
Dr. Barocas has nothing to disclose.
Dr. Lotan has nothing to disclose.

Dr. Grivas reports personal fees from AstraZeneca; Bayer; Biocept; Bristol-Myers Squibb; Clovis Oncology; Dendreon; Driver; EMD Serono; Exelixis; Foundation Medicine; Genentech; Genzyme; Heron Therapeutics; Janssen; Merck & Co.; Mirati Therapeutics; Pfizer; Seattle Genetics; QED Therapeutics; Grants from AstraZeneca, Bayer; Genentech/ Roche; Merck & Co.; Mirati Therapeutics; Oncogenex; Pfizer, Clovis Oncology, Bavarian Nordic, Immunomedics, Debiopharm, Bristol-Myers Squibb outside of the submitted work.

Dr. Stephenson has nothing to disclose.
Dr. Shah has nothing to disclose.
Dr. Rhiij has nothing to disclose.
Dr. Daneshmand has nothing to disclose.
Dr. Spiess has nothing to disclose.

Dr. Shariat reports personal fees from Astellas, AstraZeneca, Bayer, BMS, Cepheid, Ferring, Ipsen, Janssen, Lilly, MSD, Olympus, Pfizer, Pierre Fabre, Roche, Sanochemia, Sanofi, Wolff, outside the submitted work; in addition he has following patents: Method to determine prognosis after therapy for prostate cancer; Granted 2002-09-06, Method to determine prognosis after therapy for bladder cancer; Granted 2003-06-19, Prognostic methods for patients with prostatic disease; Granted 2004-08-05, Soluble Fas urinary marker for the detection of bladder transitional cell carcinoma; Granted 2010-07-20.
Acknowledgment

We would like to thank Kenichiro Ikeda for data extraction from The Cancer Genome Atlas Program.

Supplementary materials

Supplementary material associated with this article can be found in the online version at https://doi.org/10.1016/j.eururo.2020.01.010.

References

